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Path-planning in dynamic environments while meeting safety requirements
for robots and humans is an open problem in robotics. The successful naviga-

tion in this kind of environments requires a certain level of anticipation to the

future behavior of moving objects. In this paper we propose the use of move-
ment prediction in the generation of dynamic artificial potential fields (DAPF),

which will allow the robot to navigate in highly dynamic environments with a

major degree of safety and effectiveness, especially in cases where the obsta-
cles and objectives move at higher velocities than the controlled robots. Our

approach is based on previous works on potential and velocity fields with ad-
ditional considerations to avoid the well known local minimum problem and

to anticipate the predicted path of objects, our solution tries to maintain the

reactive characteristics of the artificial potential fields. The proposed method
was tested in a holonomic simulation with 100% better results for the same

scenarios than the original fields without prediction.
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1. Introduction

The navigation using Artificial Potential Fields (APF) was presented for the

first time by Khatib with the introduction of FIRAS, this function was de-

signed to achieve real-time collision avoidance in unknown environments for

manipulators and mobile robots.1 This original idea has been in continuous

development and adapted through the years in the field of robotics. How-

ever, there were many problems inherent to the APF approach which were

summarized by Koren et al.2 In an attempt to solve those problems, new

methods emerged to modify the fields in order to cope with their limitations.

The Virtual Force Field Method (VFF), the Vector Field Histogram (VFH)3

and the enhanced VFH*4 for local obstacle avoidance are some examples.
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Despite its limitations, the APF are still widely used due to its real-time

performance in many applications like planetary exploration rovers,5,6 or in

foraging tasks.7 In other related work Li and Horowitz proposed the Passive

Velocity Field Control (PVFC), in this method the motion task for manip-

ulator control is encoded as a velocity field,8 this method was improved in

consecutive works by Li and Moreno.8,9 However, this solution was ineffi-

cient in environments that change rapidly. Therefore new ways of dealing

with the generation of references in an active fashion emerged, primary, in

the works of Bruijnen,10 ,Estévez11 and more recently Pérez-D’Arpino,12

but it is still considered as an open problem due to the limitless variations

in dynamic settings. One of the many problems in dynamic environments is

the likely presence of moving objects with greater or comparable velocities

than the top speed of the robot. This creates a safety hazard, since in some

cases the APF planner may take the robot to an area believed safe but that

will be occupied by a fast moving object in the near future, in this scenario

the robot may not be able to escape that area in the next iterations and

a collision will occur. In this work a prediction scheme is introduced which

modifies the fields in order to anticipate the future positions of moving

objects on the workspace. This allows the controlled robots a mechanism

to avoid the regions that will be occupied by moving obstacles, also this

method is used to predict the position of goals and modify the fields to

anticipate them.

2. Methodology

The solution proposed in this paper aims to solve general problems of navi-

gation with motion prediction. In order to illustrate the most typical scenar-

ios two main cases were selected: Predictive obstacle avoidance with and

without defined objectives. In the predictive obstacle avoidance scenario

without objetives, one robot lies on the path of a fast moving obstacle and

it needs to avoid a collision. On the second case, the robot is traveling to-

wards a defined objetive in a course that will pass through the path of a fast

moving obstacle, once again the robot has to avoid the collision and also

get to the goal. The proposed method is divided into two main parts: The

predictor, responsible of the indexing and prediction of moving obstacles

and goals; and the planner which defines the attractive and repulsive fields

according to the position of the robot, the goals, the obstacles and their

predicted paths. This method assumes the presence of a subsystem which

provides the location information of all the objects in the workspace in each

iteration. The primary experiments were implemented using a PythonTM
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simulation with an holonomic platform. Additional tests were implemented

in the robot development environment WebotsTM with physics using a sim-

ulated differential wheels robot Amigobot. The maximum speed and other

physical properties of the simulated robot in both cases are similar to the

those of the real Amigobot.

The proposed solution is organized as in Fig. 1.

Fig. 1: Block Diagram of the predictor and potential field generation system.

3. Predictor and Potential Fields Definition

The system faces two constrains,13 the response time available to plan a

safe movement (which is a function of the system dynamics) and a temporal

restriction about the certainty of the prediction in the future. In other

words, it is imperative to plan rapidly but you can not plan far away in

the future. In order to cope with this effect it is possible the use of a

precise short term predictor, an inaccurate long term predictor or hybrid

solutions. In any case, previous data is needed in order to predict whether

a system model or historical data information. In our solution we assume

that we do not know anything about the moving objects, therefore we can

not make a prediction without studying their past actions. In this scenario

the Recursive Motion Function (RMF)14 is an ideal candidate, because it

creates a model based on the historical positions of the indexed objects,

this motion function can express a large number of simple and complex

movement types like polynomials, ellipses, circles, sinusoids, etc. In the

RMF algorithm, any polynomic function of degree D can be converted to

a lineal recurrence after D + 1 differentiations. Based on this information

Tao proposed the following recursive function:14 o(t) = C1 · o(t− 1) +C2 ·
o(t−2)+ · · ·+Cf ·o(t−f). Wich can be converted to matrix form, defined

as the motion state So(t) = Ko · So(t− 1)

Where Ci(1 ≤ i ≤) is a d×d constant matrix (d is the dimension of the

space), and f is an important parameter called the retrospect. The motion
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state So(t) is defined for an object o at time t as a vector representing

its location at the f most recent timestamps. Where Ko is a constant

(d · f)× (d · f) motion matrix for o.

In our solution we are using d = 2, and using the two most recent

locations (retrospect f = 2) then equation 3 becomes:

⎡
⎢⎢⎣

o(t) · x1

o(t) · x2

o(t− 1) · x1

o(t− 1) · x2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
k11 k12 k13 k14

k21 k22 k23 k24

1 0 0 0

0 1 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
o(t− 1) · x1

o(t− 1) · x2

o(t− 2) · x1

o(t− 2) · x2

⎤
⎥⎥⎦ (1)

The problem is finding the matrix K. We use the method of motion

estimation proposed by Tao14 using the actual location lo(t) of the object

o at time t and the h most recent timestamps to solve S ·kl(t) = l. In order

to find the solution for this equation we need to find the inverse of S, Tao

proposed singular value decoposition (SVD) but in our work we also tried

other faster iterative methods like the gradient conjugate suitable for large

retrospects f .

In our holonomic simulation we tested different types of movements

like linear, polynomial and circular. In those cases a retrospect of f = 5

represented accurately the motion as indicated by Tao. However, when we

add some noise to the input data the results change dramatically. In Fig. 2

the motion function of a sinusoid is predicted using f = 5 and the prediction

is almost perfect. In Fig. 3 we add noise to the same sinusoid and in this case

the predictor fails to estimate the exact motion behavior and the prediction

is less accurate. If computational time is not an issue one way to solve this

problem is to increase the value of the retrospect f , this mitigates the effect

of the noise, in Fig. 4 we use for the same noisy data a retrospect f = 40,

this prediction is less smooth but is more accurate than the case with a

small retrospect.

Also, in our Webots simulation we implemented a Kalman filter that

greatly reduce the effect of the noise in the prediction. In terms of compu-

tational time, an increment in the retrospect produces a larger S and the

SVD computation time increases. For a retrospect f = 100 our predictor

implementation in a Core 2 Duo CPU took 8ms while a large retrospect

f = 100 took 30ms. For single object tracking and prediction this may

not be a problem, but with several objects this could be excessively high.

An alternative is to solve the inverse of S using an iterative method like

conjugate gradient and stop at n iterations, this produces an estimate of

the inverse but the computational time is decreased with similar results,
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Fig. 2: Sinusoid prediction. Predicion Horizont Ph = 100, f = 5 and h =

100.

Fig. 3: Sinusoid with noise prediction. Predicion Horizont Ph = 100, f = 5

and h = 100.

Fig. 4: Sinusoid with noise prediction. Predicion Horizont Ph = 100, f = 40

and h = 100.

for a retrospect of f = 100 the time to calculate the conjugate gradient was

8ms.

The generation of vector references for the robot is based in potential

surfaces. Basic potential functions for obstacles, goals and walls are de-

scribed in the work of Estevez.11 For the obstacles we use Gaussian Hills,

which have limited range of action and continuous gradient. For the goals

Conical Attractors are used that provide constant radial movement. The
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walls are considered obstacles and they have the same type of potential

surface, with a maximum in the position of the wall and a Gaussian decay

in a direction perpendicular to the wall. In our method the predicted path

of the obstacles creates a repulsive potential field. Given a prediction P (t)

of dimension d × Ph, for an object o, where d is the space dimension and

Ph is the prediction horizon. A Gaussian potential field with σx and σy ac-

cording to the size of the object o is created for each P (t) ∀t ∈ [t, tPh]. The

individual contribution of each Gaussian Surface in each P (t) is summed

with the consecutive surfaces, this creates a Gaussian potential path along

the predicted route of the object o. Also, a similar approach is used to avoid

the local minima problem, a Gaussian path along recent historical positions

of the robot favors the continuous movement of the robot towards the goal.

4. Results and Discussion

Fig. 5: Predictive obstacle avoidance. Left: without goals, Right: with goal

at (170,150).

In Fig. 5 a fast moving obstacle (red) travels in a collision course to the

slower Robot (blue), in Fig. 6 one obstacle travels in the path of the robot

and another travels perpendicular. The predicted position of the obstacles

and the generated fields allow the robot to prevent the collision, when this

same tests where performed without prediction a collision always occurred.

However the success of the proposed method depends on several factors, the

training horizon H, the retrospect f , the prediction Horizon Ph and finally
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Fig. 6: Predictive obstacle avoidance. With Goal and Two Obstacles.

the weight and size of the potential path. The optimum Ph in this method

is an open issue since it depends on both the relative speed between the

robot and the obstacle and the relative direction of movement, which is not

easy to determine since the movements are not always linear. A large value

in Ph may increase the available time to successfully avoid the obstacle

but a long predicted path will affect a large area of the workspace that may

not be relevant and also increase the uncertainty of the prediction in the

future. From our tests we conclude that it is safe to set Ph equal to the

value of H. The size and weight of the Gaussian Potential Path PGP may

change the outcome even if the prediction is accurate. If the Gaussian area

and weight is too small the robot will not avoid the obstacle in time, in

contrast a large area of effect will repel any robot in a vast area that in

reality may be safe. A good value for the size of the PGP is the same width

as the maximum of the obstacle. Finally if one obstacle suddenly changes

direction, the prediction using RMF will fail and will be very unstable

until H samples of the new type of movement have been indexed. In the

meantime it is necessary to detect the moment of a sudden change in the

movement pattern and disable the predictor.

Previous techniques for navigation using potential fields usually assume

static obstacles or slow moving obstacles. Our paper presents a reactive

solution using Gaussian repulsion zones based on the predicted positions

of the obstacles to ensure collision-free trajectories in scenarios with fast

moving obstacles. We believe that this method provides a safer reactive
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planner than other methods and open many doors for future research on

the effect of the variations of the parameters to ensure safety and goal

achievement.
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